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Dynamics of localized solutions to the Raman-extended
derivative nonlinear Schrödinger equation

Luc Berǵe†, Jens Juul Rasmussen and John Wyller‡
Optics and Fluid Dynamics Department, Risø National Laboratory, PO Box 49, DK - 4000
Roskilde, Denmark

Received 4 July 1995, in final form 26 February 1996

Abstract. Using virial estimates we study the temporal evolution of localized solutions to
the Raman-extended derivative nonlinear Schrödinger (R-EDNLS) equation, with a particular
emphasis on collapse and non-collapse. By means of a Lagrangian approach, we investigate the
possibility of realizing a finite-time self-similar collapse as it appears in solutions to the usual
critical nonlinear Schr̈odinger (CNLS) equation.

1. Introduction

The modulation9 of a one-dimensional weakly nonlinear wave train is, under the slowly-
varying amplitude approximation, governed by the standard nonlinear Schrödinger (NLS)
equation

i∂τ9 + q|9|29 + p∂2
ξ 9 = 0

whereξ andτ denote the space and the time coordinates, respectively, whileq andp are
real constants.

The wave envelope perturbation scheme leading to the NLS equation presupposes a
balance between dispersive and nonlinear effects. The outcome of an exact balance is the
existence of soliton solutions to the NLS equation. However, when the nonlinear term
q|9|29 is small compared to the dispersion termp∂2

ξ 9, this balance ceases to exist and
hence the NLS equation is not appropriate anymore. In terms of the perturbation scheme,
we haveq = q(k0) ∼ k0 − kc ∼ ε � 1 ∼ p in this case, i.e.pq ∼ ε, whereε is a
small expansion parameter,k0 is the carrier wave number andkc the critical wave number
satisfyingq(k0 = kc) = 0. Since the plane waves of the NLS equation are modulationally
stable (unstable) ifpq < 0 (pq > 0), the regimepq ∼ ε � 1, for which the nonlinearity
acts against the dispersion to a small extent only, received the name ofmarginal stable
state [1]. In order to study the influence of the nonlinearity on the wave propagation in this
regime, a more detailed perturbation expansion has to be employed. In fact, as shown in
[2], one has to assume that the perturbed field quantities are of orderε1/2 (instead ofε as in
the NLS case); this yields the need to take some additional contributions into account and
one obtains the generalized NLS equation

i∂τ9 + ∂2
ξ 9 = q1|9|29 + q2|9|49 + iq39∂ξ (|9|2) + iq4|9|2∂ξ9 (1.1)
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(q1, . . . , q4 are real constants) as a model for nonlinearly modulated wave trains in the
marginal stable regime. This phenomenon can occur in different physical systems such as
Stokes waves in fluids of finite depth [3], ion acoustic waves in a two-electron temperature
plasma [4] and ion acoustic waves in a plasma composed of electrons and of positive and
negative ions [5].

In nonlinear optics the extended version of the generalized NLS equation (1.1)

i∂τ9 + ∂2
ξ 9 = q1|9|29 + q2|9|49 + (q5 + iq3)9∂ξ (|9|2) + iq4|9|2∂ξ9 (1.2)

whereq1, . . . , q5 are real constants, can be derived in a systematic way by means of the
reductive perturbation scheme as a model for single mode propagation [6]. In the context of
waveguides as optical fibres,τ usually corresponds to the propagation distance of the electric
field envelope9 of an optical beam along the fibre,ξ plays the role of the time, the terms
q1|9|29 and q2|9|49 model the nonlinear ‘Kerr’ effect, iq39∂ξ (|9|2) and iq4|9|2∂ξ9

the nonlinear dispersion contributions and the new termq59∂ξ (|9|2) a nonlinear optical
delay effect called the Raman response. In typical situations, the quintic nonlinearity of
(1.2) is a saturating nonlinearity satisfyingq1q2 < 0 with, typically, |q2| � |q1|, and we
henceforth assumeq2 < 0. Moreover, according to Kodama and Hasegawa [6] the Raman
coefficient q5 is positive. From now on we refer to equation (1.2) as the higher-order
nonlinear Schr̈odinger (HNLS) equation.

The HNLS equation can be simplified by using the following set of transformations [7].
First, by introducing the point transformation

9(ξ, τ ) = v(x1, t1) exp[i(χx1 − χ2t1)]

x1 = ξ − 2χτ t1 = −τ (1.3)

with q1 = χq4, q4 6= 0, we obtain the evolution equation

i∂t1v = ∂2
x1

v + c|v|4v + ia|v|2∂x1v + ibv2∂x1v
∗ + dv∂x1(|v|2) (1.4)

where a = −(q3 + q4), b = −q3, c = −q2 and d = −q5. Then, by employing the
U(1)-gauge transformation

w = v exp
[
i 1

2bψ
]

∂x1ψ = |w|2
∂t1ψ = i(w∂x1w

∗ − w∗∂x1w) + 1
2b|w|4 (1.5)

one gets

i∂t1w = ∂2
x1

w + ib̃|w|2∂x1w + dw∂x1(|w|2) + c̃|w|4w (1.6)

with b̃ = a − b and c̃ = c − 1
4b(2b − a). Note that the ‘stream function’ψ in (1.5) is well

defined, even in the case

d 6= 0 c̃ 6= 0

sincew satisfies the conservation law

∂t1(|w|2) = ∂x1

[
i(w∂x1w

∗ − w∗∂x1w) + 1
2b|w|4] .

Finally, equation (1.6) can be rewritten in the standard form

∂tu + i∂2
xu + |u|2∂xu + iγ u∂x(|u|2) + iσ |u|4u = 0 (1.7)

by means of the scaling transformation

u = w x = −b̃x1 t = b̃2t1. (1.8)
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Returning to the original coefficients of the HNLS equation (1.2), we can identify the real
parametersσ andγ of (1.7), as defined by

σ = q3(q3 − q4) − 4q2

4q2
4

γ = −q5

q4
. (1.9)

From a practical viewpoint, the coefficientq3 should be identically equal toq4, leading to
σ = −q2/q

2
4. As the quintic nonlinearity is classically of second order as compared with

the cubic one, we should thus in principle consider the limitσ � 1(|q2| → 0). However,
even in the previous limit, it is natural to retain this quintic contribution issued from the
Kerr nonlinearity, since the dominant cubic nonlinearity has formally been absorbed by
applying the point transformation (1.3). On the other hand, as will be seen further on, this
quintic nonlinearity plays a major role in the fate of optical pulses, in the sense that it may
be responsible for the collapse (i.e. the total self-focusing) of the pulses, provided that the
latter initially exhibit a sufficiently large amplitude. Note furthermore that assumingq4 > 0
leads toγ < 0.

We refer to equation (1.7) as the Raman-extended derivative nonlinear Schrödinger
(R-EDNLS) equation. The mathematical properties of this equation are well known for
special cases. Whenσ = γ = 0, it is completely integrable by inverse scattering transform
[8, 9]. For only γ = 0 (σ 6= 0) it forms a Hamiltonian system with three conservation
laws (conservation of mass, linear momentum and energy) [1], while in the general case the
Hamiltonian structure has been lost, but still the mass integralN ≡ ∫ |u|2 dx is conserved.

In spite of this ‘loss’ of invariants, we are able to analyse qualitatively the dynamics
of localized solutions in the non-integrable cases using virial analytical techniques and
boundedness of the Hamiltonian, in a way analogous to the critical nonlinear Schrödinger
equation (CNLS)

∂tu + i∂2
xu + iσ |u|4u = 0.

This is the objective of the present paper. In particular, we investigate the influence of
the derivative nonlinear term,|u|2∂xu, and/or the Raman term, iγ u∂x(|u|2), on the collapse
dynamics described by the CNLS equation whenσ > 0. The result has general interest
in connection with the question of arresting the collapse in nonlinear Schrödinger models
by means of higher-order contributions. The R-EDNLS equation may be considered as
a model in nonlinear optics as discussed above and our results apply to the development
and self-contraction of optical pulses propagating along a waveguide. More generally the
equation without the Raman term (γ = 0) governs the evolution of wave envelopes near
the marginal stable state and our results apply to the dynamics of localized wavepackets
under these conditions as well.

Even though virial-type relations can be derived in the R-EDNLS case, the complexity
of both the Hamiltonian and the virial identity prevents us from getting precise estimates
and hence exact results in contrast to the CNLS case. Nevertheless, in the context of
the R-EDNLS equation, it is possible to predict the occurrence of collapsing solutions for
σ > 0 by using test functions analogous to the ones employed in the framework of the
CNLS equation, these test functions being inserted into both the Lagrangian (when the
latter exists) and the virial identity of equation (1.7). The results of our analysis can then
be summarized as follows. In section 2, we derive the equations governing the motion of
the centre of mass and the virial identity. In section 3 we show that no localized solution
exists in the presence of the Raman effect(γ 6= 0). In the opposite caseγ = 0, we
prove in section 4 that equation (1.7) admits localized solutions which remain bounded and
are expected to exist globally in time for a positive Hamiltonian, provided that the mass
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integral lies below a threshold value. When these conditions are not fulfilled, we use the
virial identity of the R-EDNLS equation together with the assumption that the leading order
part of the solution can be represented as a generalized self-similar waveform to show that
a finite-time collapse may occur whenγ = 0, while the presence of the Raman effect can
possibly arrest the collapse. The limitations of this procedure are discussed in section 5.

2. The centre of mass and the virial identity of time-dependent solutions to the
R-EDNLS equation

The EDNLS equation defined by equation (1.7) without the Raman response,

∂tu + i∂2
xu + |u|2∂xu + iσ |u|4u = 0 (2.1)

possesses three conservation laws [1], namely

∂tUi + ∂xPi = 0 i = 1, 2, 3 (2.2)

where the densitiesUi and the fluxesPi take the form

U1 = |u|2 (2.3)

P1 = i(u∗∂xu − u∂xu
∗) + 1

2|u|4
U2 = 1

2i(u∗∂xu − u∂xu
∗) (2.4)

P2 = 1
2i(u∂tu

∗ − u∗∂tu) + 1
2|u|4

U3 = |∂xu|2 − 1
4i|u|2(u∂xu

∗ − u∗∂xu) − (σ/3)|u|6
P3 = −(∂tu∂xu

∗ + ∂tu
∗∂xu) + i 1

4|u|2(u∂tu
∗ − u∗∂tu).

(2.5)

Here i = 1 corresponds to the conservation of mass,i = 2 leads to the conservation of the
linear momentum andi = 3 to the conservation of energy. We can then expressP1 in
terms ofU1 andU2:

P1 = 2U2 + 1
2U2

1 . (2.6)

Moreover, the EDNLS equation (2.1) forms a Hamiltonian system, where the Hamiltonian
H is given by

H ≡
∫

U3 dx = ‖∂xu‖2
2 − (σ/3)‖u‖6

6 − 1
4i

∫
|u|2(u∂xu

∗ − u∗∂xu) dx (2.7)

with

‖u‖6
6 ≡

∫
|u|6 dx ‖∂xu‖2

2 ≡
∫

|∂xu|2 dx

and it is assumed thatu ∈ W 1,2 at least locally in timet . Here and in the following, we
use the standard notation of the theory of Sobolev spaces, in particular,‖ · ‖p represents the
usualLp norm (‖f ‖p ≡ (

∫ |f |p dx)1/p for any Lp-integrable functionf ).
When we include the effect of the Raman term, i.e. whenu obeys the R-EDNLS

equation (1.7) withγ 6= 0, only the mass densityU1 ≡ |u|2 leads to the conserved integral∫
U1 dx, and the evolution of the densityU2 is given by

∂tU2 + ∂xP2 − 1
2γ ∂2

x (U2
1 ) + γ [∂xU1]2 = 0. (2.8)

Let N ≡ ∫ |u|2 dx ≡ ‖u‖2
2 denote the ‘total mass’ of the wave field. The centre of mass

(CM) 〈x〉 of the wave is defined by

〈x〉 ≡ N−1
∫

x|u|2 dx. (2.9)
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Then, by using the relations (2.2), (2.3), (2.6), (2.7) and (2.8), we easily derive the equations
for the ‘velocity’ and the ‘acceleration’ of the CM, reading respectively as

N∂t 〈x〉 = 2
∫

U2 dx + 1
2

∫
U2

1 dx (2.10)

N∂2
t 〈x〉 = −2γ

∫
(∂xU1)

2 dx − i
∫

U1(u
∗∂xu − u∂xu

∗)x dx. (2.11)

Furthermore, the ‘mean square radius’〈x2〉 of the wave field is defined by

〈x2〉 ≡ N−1
∫

x2|u|2 dx = N−1
∫

x2U1 dx

in such a way that by differentiating this integral twice in time and by using the relations
(2.2), (2.3), (2.6), (2.7) and (2.8), we can establish the following virial identity

N∂2
t 〈x2〉 = 8H + 2

3‖u‖6
6 + 2i

∫
xU1∂x(u∂xu

∗ − u∗∂xu) dx − 4γ

∫
x{∂xU1}2 dx

= 8H + ∂t

( ∫
xU2

1 dx

)
− 4γ

∫
x{∂xU1}2 dx

(2.12)

whereH is still given by (2.7) and remains conserved forγ = 0 only.

3. General properties of stationary and self-similar solutions

Particular solutions of the EDNLS equation (1.7) may be sought under the form of stationary
states or of travelling-wave structures propagating along thex-axis with constant velocity.
In this respect, such travelling-wave solutions of the EDNLS equation (2.1) have already
been investigated in [1] and [7]. Their existence follows from the property that there
is a coupling between the constant velocity of the solution and its amplitude, which is
due to the nonlinear derivative of the EDNLS equation. More generally, regarding any
time-dependent solutions, it can be noted that this derivative term introduces a nonlinear
convection of the localized waveforms. Nevertheless, for the sake of simplicity, we will
limit our investigation to the simpler class of stationary solutions, i.e. steady-state solutions
carrying a zero velocity, bearing in mind that the latter, consisting of localized soliton-type
structures, can be viewed as being good candidates for the initial value problem associated
with the R-EDNLS equation.

3.1. Stationary solutions

The expression for the stationary wave solution to the R-EDNLS equation is given by

u(x, t) = φ(x) exp[−iλt ]. (3.1)

By inserting expression (3.1) into (1.7), we find thatφ obeys the ordinary differential
equation (ODE)

−iλφ + iφ′′ + |φ|2φ′ + iσ |φ|4φ + iγφ(|φ|2)′ = 0 (3.2)

whereφ′ ≡ dφ/dx andφ′′ ≡ d2φ/dx2.
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3.1.1. The caseγ = 0. First, let us assumeγ = 0. Settingσ > 0, we can then prove
the non-existence of non-zero, smooth, localized solutions of (3.2) forλ 6 0 by arguing by
contradiction. Indeed, let us suppose that there exists aφ 6= 0 ∈ W 1,2 satisfying (3.2) for
λ 6 0. By multiplying equation (3.2) byx(φ∗)′, retaining the imaginary part of the result
and integrating over space, we have

−λ‖φ‖2
2 + ‖φ′‖2

2 + 1
3σ‖φ‖6

6 = 0 (3.3)

where ‖φ‖6
6 is finite by virtue of the Sobolev inequality, from which we arrive at a

contradiction. The solutionsφ may thus be localized forλ > 0 only. In the following
we assume that this requirement is always fulfilled and we refer to equation (3.2) as the
ground-state equation. The latter, moreover, obeys the scale invariance

x → λ1/2x φ → λ1/4φ

so that the mass integralNs ≡ ∫ |φ|2 dx ≡ ‖φ‖2
2 is independent ofλ.

Let us now consider the acceleration equation (2.11) whenu is given by (3.1) forγ = 0.
By multiplying equation (3.2) with|φ|2φ∗, retaining only the real part and integrating over
space, we obtain

i
∫

|φ|2(φ∗φ′ − φ(φ′)∗)′ dx = 0

and hence relation (2.11) simply reduces to

∂2
t 〈x〉 = 0

as expected.
Next, we consider the virial identity (2.12) in the same situation and proceed as follows.

By multiplying equation (3.2) byφ∗ and integrating the imaginary part of the result over
space, we obtain the identity

−2λ‖φ‖2
2 − 2‖φ′‖2

2 + i
∫

|φ|2(φ(φ∗)′ − φ∗φ′) dx + 2σ‖φ‖6
6 = 0. (3.4)

Then we multiply (3.2) byx|φ|2φ∗ and retain the real part of the space integrated result to
find

2i
∫

x|φ|2((φ∗)′φ − φ∗φ′)′ dx = − 2
3‖φ‖6

6. (3.5)

By inserting (3.1), (3.3) and (3.6) into the energy integral (2.7), we get

H = 0 (3.6)

and finally, by plugging (3.1), (3.5) and (3.6) into (2.12), we readily obtain

∂2
t 〈x2〉 = 0 (3.7)

showing that computed on the ground states defined by the stationary solutions (3.1), both
the energy and the virial relation reduce to zero. The result (3.7) is of course expected to
be satisfied for a stationary solution. The propertyH = 0, in addition to the above scale
invariance, makes the properties of the ground-state solutions to the EDNLS equation (2.1)
very similar to the ones of the CNLS equation.
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3.1.2. The caseγ 6= 0. Now, let us assumeγ 6= 0. By multiplying (3.2) by (φ∗)′,
integrating only the imaginary part, one gets

γ

∫
[(|φ|2)′]2 dx = 0. (3.8)

This result (3.8) implies that the ODE (3.2) cannot possess anyreal localized ground states
different from zero, otherwiseφ should reduce to a non-zero constant, which is impossible.
This remark applies in particular to the case when the derivative term|u|2∂xu in (1.7), or
equivalently|φ|2φ′ in (3.2), is disregarded, leadinga priori to real stationary solutions.

In this connection, we can extend this latter result to the non-existence of any non-
zero localizedcomplex-valuedstationary solutions even when retaining the derivative
contribution|u|2∂xu in (1.7). Indeed, let us suppose the contrary and writeφ in the form
φ = ρ exp[iθ ]. Then, equation (3.2) decomposes into two equations:

−λρ + ρ ′′ − ρ(θ ′)2 + ρ3θ ′ + σρ5 + γρ(ρ2)′ = 0 (3.9)

2ρ ′θ ′ + ρθ ′′ = ρ2ρ ′. (3.10)

Multiplying (3.10) byρ, then integrating the resulting equation enables us to determine the
first derivative of the phase as follows,

θ ′ = 1

4
ρ2 + C

ρ2
(3.11)

whereC denotes an integration constant. Substituting this result into equation (3.9) yields

−
(

λ − 1
2C

)
ρ + ρ ′′ +

(
σ + 3

16

)
ρ5 + γρ(ρ2)′ − C2

ρ3
= 0 (3.12)

for which it is clear that the constraintC = 0 must follow when regarding smooth, localized
solutions, i.e. solutions vanishing asymptotically likeρ(x → ±∞) = 0 together with
all their derivatives. In this case, multiplying equation (3.12) byρ ′ and integrating the
resulting equation leads to(γ /2)

∫
[(ρ2)′]2 dx = 0, which implies thatρ = constant for all

x. Consequently, equation (1.7) has no non-trivial localized ground-state solutions when
γ 6= 0.

3.2. Self-similar solutions

We now consider proper self-similar solutions of equation (1.7). The self-similar
transformation of the R-EDNLS equation is given by (see, e.g., [7])

u(x, t) = t−
1
4 (1+iβ)f (ξ) ξ = 2xt−

1
2 (3.13)

and, after plugging it into the R-EDNLS equation, it yields the ODE

− 1
4(1 + iβ)f − 1

2ξf ′ + i4f ′′ + 2|f |2f ′ + i2γf (|f |2)′ + iσ |f |4f = 0. (3.14)

Here it is assumed thatf ∈ W 1,2. The acceleration equation for the CM now takes the
form

N∂2
t 〈x〉 = −4γ t−3/2

∫
[(|f |2)′]2 dξ − 2it−3/2

∫
|f |2(f ∗f ′ − f (f ∗)′)′ dξ (3.15)

that can be simplified by means of (3.14) in the following way. We multiply equation (3.14)
by |f |2f ∗ and integrate the real part of the result over space to get the identity

2i
∫

|f |2(f ∗f ′ − f (f ∗)′)′ dξ = 1
8‖f ‖4

4 (3.16)
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where‖f ‖4
4 ≡ ∫ |f |4 dξ .

Inserting (3.16) into (3.15), one readily obtains the equation

N∂2
t 〈x〉 = −4t−3/2

(
γ

∫
[(|f |2)′]2 dξ + 1

32‖f ‖4
4

)
(3.17)

for the acceleration of the CM of localized self-similar waves. Thus, forγ > 0, the speed
∂t 〈x〉 always decreases with timet , while for γ < 0 there is a valueγ = γcr given by

γcr ≡ − 1

32

‖f ‖4
4∫

[(|f |2)′]2 dξ
(3.18)

such that the acceleration of the CM is identically equal to zero, implying therefore that the
self-similar wave propagates with a constant speed.

4. Collapse dynamics

The previous property of a vanishing Hamiltonian forγ = 0 and the fact that the mass
integral is independent ofλ for the ground-state solution are quite interesting in the sense
that these results are similar to the ones obtained from the critical nonlinear Schrödinger
(CNLS) equation

∂tu + i∂2
xu + iσ |u|4u = 0 (4.1)

which is refound from equation (1.7) by disregarding the Raman term(γ = 0) and the
derivative contribution|u|2∂xu. As reviewed in [10], equation (4.1) is a Hamiltonian system
possessing the conserved energy integral

HCNLS = ‖∂xu‖2
2 − (σ/3)‖u‖6

6 (4.2)

that vanishes on the ground-state solution of (4.1) in the form (3.2); this solution is localized
for λ > 0. Another property deduced from the Hamiltonian (4.2) is that the time-dependent
solutions to equation (4.1) are bounded for all times provided that theL2 normN is smaller
than a threshold valueN0 which is just the mass integralN computed on the ground-state
solution [10, 11]. In this caseH has to be positive. Let us here show that an analogous
property characterizes the solutions of the EDNLS equation. First of all, we make use of
the simple inequality

−|a| 6 a 6 |a| ∀a

to display that the last contribution in the expression (2.7) can be expressed in terms of the
two other ones‖∂xu‖2

2 and‖u‖6
6. Indeed, by doing so, we get

H 6 ‖∂xu‖2
2 − (σ/3)‖u‖6

6 + 1
2

∫
|u|2|u||∂xu| dx

such that when employing the Schwarz inequality together with the simple estimate(
a

ε
− εb

)2

> 0 ∀a, b, ε (4.3)

we find

H 6 ‖∂xu‖2
2 − (σ/3)‖u‖6

6 + 1

4

(
ε2‖u‖6

6 + 1

ε2
‖∂xu‖2

2

)
. (4.4)

Settingε2 = 4
3σ for σ > 0, H is simply bounded from above by

H 6
(

1 + 3

16σ

)
‖∂xu‖2

2.
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Now, we use the well known Sobolev (Gagliardo–Nirenberg) inequality

‖u‖6
6 6 K‖∂xu‖2

2‖u‖4
2 K = constant> 0 (4.5)

to boundH from below: employing again−|a| 6 a, (4.3), together with (4.5), we rearrange
all the terms to obtain

H >
(

1 − 1

4ε2

)
‖∂xu‖2

2 −
(

ε2

4
+ σ

3

)
‖u‖6

6

>
[

1 − 1

4ε2
−

(
ε2

4
+ σ

3

)
K‖u‖4

2

]
‖∂xu‖2

2.

(4.6)

Settingε2 = 1 in (4.6), we get

H >
(

3

4
− (3 + 4σ)

12
K‖u‖4

2

)
‖∂xu‖2

2

from which we deduce that‖∂xu‖2
2 always remains bounded provided that the massN lies

below a critical valueNc defined by

Nc ≡ 3√
(4σ + 3)K

(4.7)

where, following [11], the best constantK optimizing the Sobolev inequality (4.5) is given
by Kbest ≡ 3/(σN2

0). In this case,‖u‖6
6 can be controlled by virtue of the constancy ofH

and therefore remains bounded in turn. Solutionsu(x, t) satisfyingN < Nc can thus be
expected to exist globally in time; in this caseH is positive. In the opposite caseH 6 0, the
estimate (4.6) shows thatN necessarily satisfiesN > Nc and we cannot control the gradient
and theL6 norm in the Hamiltoniana priori any longer. Note that even forH > 0, we
may haveN > Nc, so that also in this situation, the previous norms cannot be controlled.
In the context of the CNLS (4.1), such a situation gives rise to blowing-up structures, i.e.
solutions that collapse in finite time with a constant mass and with a diverging mass density
U1. When collapse occurs, the diverging solutions turn out to exhibit a self-similar shape
|u|2 = [1/a(t)]f (x/a(t)) near the collapse singularity. Herea(t) denotes the typical width
of these solutions that are expected to blow-up at a finite timetc < +∞ with a(t) → 0
as t → tc. For the CNLS equation (4.1), the blow-up dynamics simply results from the
vanishing of the mean square radius〈x2〉 ast → tc. This vanishing easily follows from the
standard virial identity

N∂2
t 〈x2〉 = 8H (4.8)

whereH is given by (4.2), under the sufficient requirementH < 0.
However, in the present scope of the R-EDNLS equation, the equality (4.8) is

supplemented by two additional contributions, namelyχ ≡ ∂t

(∫
x|u|4 dx

)
and 0 ≡

−4γ
∫

x{∂x(|u|2)}2 dx, the effects of which cannot be directly estimated in the expression
(2.12). Instead of finding exact estimates of this latter relation (2.12), we suppose—by
analogy with the CNLS equation—that if collapse occurs, the singular part of the solution
has to behave with an exact self-similar shape ast → tc. This amounts to approaching the
dynamics in time of a typical radiusa(t) of a localized structure which isa priori self-
similar (the property according to which equation (1.7) admits self-similar-type solutions
can easily be justified in view of section 3.2). In the simple case of the CNLS equation,a(t)

may be of the form
√

tc − t or linear in time witha(t) ∼ (tc − t), depending on the initial
data. In the following, we assumeH < 0, leading to collapsing solutions in the CNLS case,
and investigate the effects of the additional derivative contributions in (2.12) for exactly
self-similar solutions. In the simpler CNLS case, these behaviours ofa(t) may directly be
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deduced by integrating (4.8) twice in time and/or by a so-called variational procedure based
on the Lagrangian density

LCNLS = − 1
2i(u∗∂tu − u∂tu

∗) − |∂xu|2 + (σ/3)|u|6 (4.9)

from which the CNLS equation (4.1) can be derived when expandingδL/δu∗ = 0 with
L = ∫ LCNLS dx. The variational (or Lagrangian) procedure then consists in estimating the
time evolution of the widtha(t) entering the test function

u(x, t) = 1√
a(t)

8̃(ξ) exp

[
− iȧ(t)

4a(t)
x2

]
ξ ≡ x

a(t)
(4.10)

with ȧ ≡ da/dt . This test function (4.10) is exactly self-similar in the sense that8̃ does not
explicitly depend on time and the space dependences in the phase assure the self-consistency
of the self-similarity rescalingx → x/a(t) with the kinetic contributions ofL and with
the mass continuity equation (2.1) [12]. Plugging (4.10) into equation (4.1), one gets the
self-similarly transformed problem:

εξ28̃ + ∂2
ξ 8̃ + σ |8̃|48̃ = 0 (4.11)

ε = − 1
4a3ä. (4.12)

In addition, introducing solution (4.10) intoL = ∫ LCNLS dx then yieldsL = L(a, ȧ, ä)

with

L = −aä

4
I − E{8̃}

a2
(4.13)

whereI ≡ ∫
ξ2|8̃|2 dξ and

E{8̃} = ‖∂ξ 8̃‖2
2 − (σ/3)‖8̃‖6

6

is nothing else but the energy integral (4.2) of CNLS expressed in terms of the self-similar
function 8̃. Writing the variational equations

∂t

(
∂L

∂ȧ

)
− ∂2

t

(
∂L

∂ä

)
= ∂L

∂a
(4.14)

provides the dynamical system

ε = −a3ä

4
= −E{8̃}

I
(4.15)

which predicts a vanishing ofa(t) with a(t) ∼ √
tc − t for E{8̃} < 0 (this means that

computed with8̃, the nonlinear contribution ofHCNLS dominates over the dispersion) or
with a(t) ∼ (tc − t) for E{8̃} = 0. In this latter case, one obtainsε = 0 and when we
introduce the ground-state substitution

u(x, t) → u(x, t) exp

[
− iλ

∫ t

0
du/a2(u)

]
(4.16)

into (4.1) withu(x, t) given by (4.10) andλ > 0, 8̃ simply reduces to the standard stationary
solution of CNLS carrying a zero energy (H {8} = 0). As announced above, the dynamical
system (4.15) can also be established from the virial identity (4.8). Indeed, let us now insert
the substitution (4.10) into relation (4.8): by doing so, we readily get∂2

t (a2I ) = 8H where
H defined by (4.2) expands in the form

H → 1

a2
[‖∂ξ 8̃‖2

2 − (σ/3)‖8̃‖6
6] + ȧ2

4
I + ȧ

a
Im

∫
(ξ8̃∂ξ 8̃

∗) dξ. (4.17)
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Multiplying equation (4.12) byξ28̃∗ and integrating the imaginary part of the result over
space leads to the vanishing of the last contribution of (4.17) with Im

∫
(ξ8̃∂ξ 8̃

∗) dξ = 0.
Expanding finally the virial relation∂2

t (a2I ) = 8H therefore restores the dynamical
equation (4.15). It can be noticed in this respect that imposing the conservation ofH

thereby implies(1/a2)E{8̃} 6 0 with (ȧ2/4) > 0.
In order to know if the derivative termχ and the Raman term0 in the virial identity

(2.12) may affect the evolution ofa(t) as compared with the CNLS case, we simply repeat
both of the former procedures, concentrating our attention on the case0 = γ = 0 first
(without the Raman contribution). In this case, equation (2.1) is a Lagrangian system with
the density

LEDNLS = LCNLS + 1
4i|u|2(u∂xu

∗ − u∗∂xu) = − 1
2i(u∗∂tu − u∂tu

∗) − U3 (4.18)

with H = ∫
U3 dx. Here, the additional contribution in Im(|u|2u∂xu

∗) of (4.18) implies a
modification ofL(a, ȧ, ä) computed fromLEDNLS = ∫ LEDNLS dx as follows,

L = −aä

4
I − ED{8̃}

a2
− ȧ

4a

∫
ξ |8̃|4 dξ (4.19)

in which ED{8̃} reads as the integralH given by (2.7) and expressed in terms of8̃, i.e.

ED{8̃} = ‖∂ξ 8̃‖2
2 + 1

2Im
∫

|8̃|2(8̃∂ξ 8̃
∗) dξ − (σ/3)‖8̃‖6

6. (4.20)

Deriving the variational equations fora(t) from (4.19), we easily deduce

ε = −a3ä

4
= −ED{8̃}

I
(4.21)

showing that the extra contribution—arising from the derivative term in equation (2.1)—
does not play any role in the dynamics ofa(t). This leads to similar behaviours as in the
‘free’ CNLS case, namelya(t) ∼ √

tc − t wheneverED{8̃} < 0, or a(t) ∼ (tc − t) for
ED{8̃} = 0. In this latter case, the linear-in-time scaling lawa(t) satisfying ä(t) = 0
may only suit for describing the asymptotic stagea(t) → 0 of the collapsing evolution and
when using the substitution (4.16),̃8 can be seen to reach in this limit the zero-energy
ground-state solution8 studied in section 3.

On the other hand, when employing (4.10), equation (2.1) self-similarly transforms into

εξ28̃ + ∂2
ξ 8̃ − i|8̃|2∂ξ 8̃ − 1

2aȧξ |8̃|28̃ + σ |8̃|48̃ = 0 (4.22)

from which the relation
∫

Im(ξ8̃∂ξ 8̃
∗) dξ = − 1

4

∫
ξ |8̃|4 dξ follows. Using this, the

Hamiltonian (2.7) simplifies in turn as

H → 1

a2
ED{8̃} + ȧ2

4
I (4.23)

so that the virial relation (2.12) finally restores the dynamical system (4.21). Estimated
from the self-similar ansatz (4.10), the effect introduced by the nonlinear derivative term
in equation (2.1) therefore does not affect the collapse dynamics already characterizing
solutions to the CNLS equation.

Now regarding the Raman effect(γ 6= 0), we cannot use the Lagrangian approach in
a convenient way, as equation (1.7) does not constitute a Hamiltonian system. However,
we can again invoke the virial identity (2.12) together with the properties of8̃ governed
by equation (4.22) whose left-hand side now contains the extra contributionγ 8̃∂ξ (|8̃|2) to
read on the whole

εξ28̃ + ∂2
ξ 8̃ − i|8̃|2∂ξ 8̃ − 1

2aȧξ |8̃|28̃ + σ |8̃|48̃ + γ 8̃∂ξ (|8̃|2) = 0. (4.24)
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When γ 6= 0, the virial (2.12) reading∂2
t (a2I ) = 8H for γ = 0 must consistently be

supplemented by an additional contribution of the form0̃/a2 to yield eventually

2aäI = (8ED{8̃} + 0̃)/a2 (4.25)

with 0̃ = −4γ
∫

ξ{∂ξ (|8̃|2)}2 dξ .
A spreading of the solutionu(x, t) can thus be inferred from the dynamical system

(4.25) with a(t) ∼ t if 0̃ = −8ED{8̃} or with a(t) ∼ √
t if the Raman effect can be

sufficiently strong to ensurẽ0 > −8ED{8̃}, which should hereby prevent a self-similar
collapse. Note, however, that due to the self-similarity assumption according to which8̃

has to remain time-independent, the linear-in-time scalinga(t) ∼ t leading toaȧ ∼ t in
equation (4.24) should in principle be forbidden.

This arrest of collapse induced by a spreading dynamics appears in a certain sense to
be consistent with the property following which there is no localized ground-state solution
when γ 6= 0. Indeed, keeping in mind that the collapse consists in a localizing process
of nonlinear wavepackets whose most elementary shape8̃ is sought under the form of
zero-energy ground states, the non-existence of such localized states considerably limits the
possibility of blow-up together with the possibility of realizing localized collapsing solutions
to equation (1.7).

5. Validity of the variational approach

All the above arguments are based on an exactly self-similar behaviour of the solutionu(x, t)

assumed to be self-similar and localized even in the presence of the derivative and Raman
contributions. They only give some global tendencies of the time evolution of the singular
part of the solution, which should be numerically checked in future investigations. In this
respect, it is worthwhile noticing that in the presence of the derivative/Raman terms, the
choice of the test function (4.10) could appear to be invalid regarding the space dependence
of the phase: indeed, the latter functional phase dependence of the form exp[−i(aȧ/4)ξ2]
in (4.10) is always true for the simple case of the CNLS equation, as it can be verified by
repeating the Lagrangian procedure with a more general test function

u(x, t) = 1√
a(t)

8̃

(
x

a(t)

)
exp

[
i
θ(t)

4

x2

a2(t)

]
(5.1)

containing, for example, a real profile trial function8̃. In the present context of the EDNLS
equation, wherẽ8 is nota priori determined (it can be complex valued), one can check from
the variational method thatL should be extended to a general functionL = L(a, ȧ, θ, θ̇ )

yielding, through the variational equationsδL/δθ = δL/δa = 0,

θ = −aȧ − 2

I
(J − B/4) (5.2)

with J = Im
∫
(ξ8̃∗∂ξ 8̃) dξ andB = ∫

ξ |8̃|4 dξ , instead ofθ = −aȧ simply, and

ε = −a3ä

4
= −ED{8̃}

I
+ (J − B/4)2

I 2
. (5.3)

From equation (5.3), it could be concluded that a more general conjugate momentum
θ(t) including a constant contribution affects the behaviour ofa(t) by adding a negative
quantity in the dynamical equation governing̈a. Apparently, this extra contribution,
scaling asED{8̃}, could be thought to strengthen the collapse. In reality, we have to
account for the fact that changingθ(t) = −ȧa into (5.2) also affects the self-similar
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solution 8̃, whose phase then exhibits an additional contribution quadratic in space with
8̃ → 8̃ exp i[(J − B/4)ξ2/(2I )], and this necessarily changes the value of the energy
integralED{8̃}, so that, formally speaking, the dynamical system (5.3) has not to differ from
(4.21) on the whole. Therefore, imposingθ(t) in the basic formθ(t) = −ȧa instead of its
more general counterpart (5.2) does not alter the previous results. This choice is, moreover,
consistent with the mass continuity relation (2.2) of the full R-EDNLS equation (1.7), in
the sense that it preserves this conservation law when the latter is expressed in terms of the
function 8̃ through the substitution (5.1).

Furthermore, as seen from expression (2.11), the centre of mass of solutions to the
R-EDNLS equation, whatever the value ofγ may be, does not satisfyN∂2

t 〈x〉 = 0,
unlike the standard solutions to the CNLS equation (4.1). This means that the solutions to
equation (1.7) may displace along thex-axis while they evolve towards a collapse or spread
out. Such a displacement already characterizes the travelling-wave solutions moving with a
constant velocity, identified in [7]. Taking this property into account, we can wonder whether
this motion of nonlinear structures may affect their global dynamical behaviour previously
estimated from steady-state trial functions. To answer this question partly, a more detailed
analysis of the mean square radius〈x2〉 would have consisted of working on the complete
virial identity—also called ‘moment of inertia’—M ≡ N〈(x − 〈x〉)2〉, which includes the
motion of the CM of localized waveforms (see, e.g., [10]). Studying this quantity with
the test functions (4.10) or (5.1), we can easily see that the integralM = N(〈x2〉 − 〈x〉2),
carrying the additional contribution〈x〉2 ∼ a2(t), may only modify at the most the value, but
not the sign, of the coefficient on the right-hand side of equation (4.21) forγ = 0, or (4.25)
in the opposite caseγ 6= 0. Thereby, a first conclusion inferred from this straightforward
argument is that the global evolution of waveforms governed by the R-EDNLS equation
should not be altered significantly by the motion of the centre of mass. However, this
conclusion is true provided that the trial solution (4.10) remains reliable when investigating
the dynamics of the CM. In fact, when looking at solutions whose maximum displaces along
the x-axis, we need to consider test functions characterized by an amplitude of the form
|u(x, t)| = [a(t)]−

1
2 |8̃(ξ̃ , t)|, whereξ̃ ≡ (x − x0(t))/a(t) now contains the time-dependent

coordinatex0(t) at which the waveform is expected to reach a maximum. Analysing such
moving structures exceeds the limits of the present paper. Nevertheless, simple physical
arguments allow us to guess that in the caseγ = 0, the collapse dynamics may not be
affected by the motion of the CM provided that near the singularitytc the speeḋx0 is much
smaller than the collapse velocitẏa, which is quite possible for collapse rates characterized
by the scaling lawa(t) ∼ √

tc − t . More precisely, repeating the Lagrangian procedure
on these moving trial solutions shows that the dynamics of the CM becomes negligible
in the system (4.21) if near the collapse singularity the time-dependent quantitiesx0(t)

and a(t) satisfy the inequality|ẍ0|, |ẋ0|/a2 � |ä|. Under these conditions, the shape of
a waveform travelling along thex-axis may undergo a nonlinear steepening due to the
nonlinear derivative in the EDNLS equation, but this steepening should not prevent the
waveform from collapsing ultimately at a finite timetc. In the vicinity of this instant, the
spiky core of a collapsing waveform can therefore be modelled to a first approximation by
means of the self-similar solution (4.10).

Besides, when collapse occurs (i.e. forγ = 0) with a scaling lawa(t) ∼ √
tc − t

implying ε = constant> 0, the self-similarity assumption (4.10) is true up to some
logarithmic spatial divergences of theL2 norm, which here have been disregarded: indeed,
as the nonlinear contributions in|8̃|2 are localizing potentials that algebraically decay as
ξ → ∞, we can infer from equation (4.22)—as well as from the transformed CNLS
equation (4.12)—that forε > 0, 8̃ should asymptotically behave as̃8 ∼ 1/

√
ξ at large
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distancesξ → +∞, leading to a logarithmic divergence inN . This divergence can
be removed in the context of CNLS by considering so-called quasi-self-similar solutions
8̃(x/a(t), ε(t)) that contain by themselves an adiabatic dependence on time through the
function ε(t) assumed to vanish very slowly in time. To solve this problem, it is then
necessary to keep the time derivative in the transformed CNLS by making use of the
general substitution

u(x, t) = 1√
a
8̃(ξ, τ ) exp

[−iλτ − i 1
4aȧξ2

]
to get

−i∂τ 8̃ + (εξ2 − λ)8̃ + ∂2
ξ 8̃ + σ |8̃|48̃ = 0 (5.4)

with τ(t) ≡ ∫ t

0 du/a2(u). Multiplying (5.4) by 8̃∗ and retaining the imaginary part of the
result, we get the mass continuity equation∫ ξ→+∞

0
∂τ (|8̃|2) dξ = 2Im(8̃∂ξ 8̃

∗)|ξ→+∞ (5.5)

whose right-hand side is estimated from (5.4) under the quasi-self-similar assumption
∂τ 8̃ → 0. At large distanceξ → ∞, the localizing nonlinearity|8̃|4 vanishes and a
simple BKW analysis of (5.4) leads to

8̃ ∼
ξ→∞

exp[−πλ/4
√

ε] exp

[
−i

√
ε

2
ξ2

]
/
√

ξ .

Inserting this asymptotics into (5.5) and making use of the Taylor expansion8̃ = 8̃(ε =
0) + ε8̃ε(ε = 0) + · · · yields

ετ = −2 exp[−πλ/2
√

ε]

from which the ‘adiabatic’ behaviour

ε(t) = π2λ2/4

(
ln

(
ln

(
1

tc − t

)))2

(5.6)

follows with τ ∼ ln(1/(tc − t)). The asymptotic time dependence (5.6) ofε(t) amounts to
introducing a twice logarithmic correction ina(t) (see for instance [12]). Repeating this
quasi-self-similar analysis in the present context including the nonlinear derivative term
exceeds the limit of this paper. However, regarding the self-similarly transformed problem
(4.22), where the time derivative−i∂τ 8̃ must be restored, we can first check that the EDNLS
equation (4.22) admits a mass continuity equation analogous to (5.5). Then, estimating the
behaviour of8̃ asξ → ∞ leads in principle to the same function as in the CNLS case under
the constraint of a decaying nonlinearity|8̃|2 → 0 asξ → ∞. Finally, equation (4.22)
suggests the following Taylor expansion8̃ = 8̃(b = 0)+b8̃b(b = 0)+ 1

2b28̃bb(b = 0)+· · ·,
with b = −aȧ (satisfyingbτ → 0 asτ → +∞), which should yieldb ∼ πλ/ ln τ using
(5.5) in the self-similar limitε = (b2 + bτ )/4 → b2/4, and therefore lead to

a(t) ∼
(

2πλ(tc − t)

ln (ln(1/(tc − t)))

)1/2

(5.7)

as in the CNLS case.
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6. Conclusion

To summarize, we have shown some general properties of stationary and self-similar
solutions to the R-EDNLS equation (1.7). Among them, it has been proved that the
Hamiltonian attached to the EDNLS equation and computed on the stationary ground states
reduces to zero. However, unlike the solutions to the CNLS equation for which the virial
identity (4.8) provides an exact proof of finite-time blow-up under the sufficient condition
H < 0 implying N > N0, solutions to the EDNLS equation have not been rigorously
shown to collapse, due to the complexity of the virial identity (2.12). Thus, the negativity
of the Hamiltonian alone cannot guarantee the blow-up of solutions to the EDNLS equation
possessing a mass above the critical thresholdNc defined by (4.7), and the present results
therefore require to be confirmed numerically. Using a Lagrangian approach based on a self-
similar and localized trial solutions, we have nevertheless displayed that the derivative term
in the EDNLS equation (2.1) may not stop the collapse. Even if it contributes to a dispersive
effect, this nonlinear derivative term keeps the system Hamiltonian and conservative with a
mass integral remaining preserved and involved in the collapse process. Adding the Raman
response, we have shown that the resulting system does not admit any localized ground-state
solutions and that the Raman effect can compete with and eventually arrest the collapse.
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